- International Fees
International fees are typically 3.25 times the domestic tuition. Exact cost will be calculated upon completion of registration.
Course Overview
This course covers differentiation and integration with applications to electronics, electrical engineering and physics. The derivative and rules of differentiation are discussed. Differentiation of polynomial, trigonometric, exponential, logarithmic, composite and implicit functions is considered. The rules of differentiation are applied to related rate problems, max/min problems, differentials and the Taylor series. Indefinite and definite integrals are introduced and applied to circuit problems and to calculations of area, average value and rms value. Various analytical and numerical integration techniques, including change of variables, integration by parts, table lookup, numerical integration and partial fractions, are addressed. The trigonometric Fourier series and line spectrum are discussed.
Prerequisite(s)
- 50% in MATH 1431
Credits
5.0
- Not offered this term
- This course is not offered this term. Notify me to receive email notifications when the course opens for registration next term.
Learning Outcomes
Upon successful completion of this course, the student will be able to:
- Apply (iii) techniques of integration and differentiation to functions commonly encountered in electronics including trigonometric, logarithmic, exponential and polynomial functions. [1]
- Use (ii) differential calculus as a tool for calculating and comparing rates of change for locating extreme values of a function, estimating change in a function and approximating a function. [1]
- Evaluate (iii) the indefinite and definite integral of a function including change of variables, integration by parts, table lookup, numerical integration and partial fractions. [1]
- Use (iii) integral and differential calculus to solve simple differential equations such as RLC circuits and simple kinematics. [1,2]
- Calculate (iii) the average and rms value of a time‐varying, periodic current or voltage waveform such as pulses and sawtooth to determine the average power dissipated in a circuit. [1,2]
- Explain (ii) the trigonometric Fourier series and how any waveform can be constructed by adding sin waves with different frequencies. [1]
- Calculate (iii) the Fourier coefficients for various periodic waveforms to determine the strength of higher frequency harmonics. [1]
Learning Outcome Taxonomy
Based on the BCIT Learning and Teaching Centre publication “Writing Learning Outcomes”, the ECET department has defined four levels describing the depth of learning for each outcome. These are:
(i) Knowledge – Topics are mentioned, but not covered much beyond introduction or awareness.
(ii) Comprehension - Students are expected to explain and understand a topic.
(iii) Application - Students are expected to apply the information in new, but similar, situations.
(iv) Analysis, Evaluation, Synthesis - A thorough covering of a topic such that students can analyze and design new solutions.
Engineering Accreditation
The Canadian Engineering Accreditation Board (CEAB) oversees the accreditation of engineering programs across Canada. To measure the effectiveness of an engineering program the CEAB has identified twelve specific attributes that the graduate is expected to possess and use as the foundation to developing and advancing an engineering career. To ensure that the overall curriculum of the Bachelor of Engineering in Electrical program covers these attributes sufficiently, the learning outcomes for each course have been mapped to applicable CEAB graduate attributes.
1. A knowledge base for engineering: Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.
2. Problem analysis: An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions.
3. Investigation: An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data, and synthesis of information in order to reach valid conclusions.
4. Design: An ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal considerations.
5. Use of engineering tools: An ability to create, select, apply, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations.
6. Individual and team work: An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.
7. Communication skills: An ability to communicate complex engineering concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.
8. Professionalism: An understanding of the roles and responsibilities of the professional engineer in society, especially the primary role of protection of the public and the public interest.
9. Impact of engineering on society and the environment: An ability to analyze social and environmental aspects of engineering activities. Such ability includes an understanding of the interactions that engineering has with the economic, social, health, safety, legal, and cultural aspects of society, the uncertainties in the prediction of such interactions; and the concepts of sustainable design and development and environmental stewardship.
10. Ethics and equity: An ability to apply professional ethics, accountability, and equity.
11. Economics and project management: An ability to appropriately incorporate economics and business practices including project, risk, and change management into the practice of engineering and to understand their limitations.
12. Life-long learning: An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge.
Effective as of Fall 2018
Related Programs
Calculus for Electronics (MATH 2431) is offered as a part of the following programs:
- Indicates programs accepting international students.
- Indicates programs with a co-op option.
- Indicates programs eligible for students to apply for Post-graduation Work Permit (PGWP).
School of Energy
- Electrical Engineering
Bachelor of Engineering Full-time
- Electrical and Computer Engineering Technology (Automation and Instrumentation Option)
Diploma Full-time
- Electrical and Computer Engineering Technology (Electrical Power and Industrial Control Option)
Diploma Full-time
- Electrical and Computer Engineering Technology (Telecommunications and Networks Option)
Diploma Full-time
Programs and courses are subject to change without notice.